Western Water Use Management Model StateMod Training Session

March 11, 2015

Session Overview

WWUM Model Component Interaction

WWUM Model Documentation

Data Management Interfaces

Modeling Directory Structure

StateMod Overview

Control & Network File Development Streamflow Gage Input File Development Diversion Structure Input File Development Consumptive Use Input Files – StateCU Interaction Reservoir Input File Development Additional Input Files Operating Rules Inflow Hydrology

Running StateMod

StateMod Model Output Files

Calibration Results

Discussion Topics and Future Scenarios

WWUM Model Component Interaction

CropSim – regionalized soil water balance model that provides estimates of net irrigation requirement (NIR) based on climate, land use, soil properties, crop types and irrigation practices.

StateCU – surface water balance model that reads in NIR and estimates the supply limited consumptive use and historical co-mingled pumping based on estimates of historical diversions, conveyance and application efficiency, irrigation practices, and soil properties.

StateMod – surface water allocation model that reads in irrigation, reservoir, and ground water demands and simulates diversions and pumping to meet those demands based on the Prior Appropriation administration system.

ModFlow – ground water model that simulates alluvial and streamflow conditions based on soil properties, precipitation and irrigation recharge, crop consumptive use, and ground water pumping.

WWUM Model Documentation

- The WWUM Irrigated and Dryland Acreage Assessment report describes the development of the 1953, 1975/77, 1984, 1993, 1997, 2001, 2005 and 2010 irrigated lands coverages, including the process used to determine irrigated acreage, associated crop type, irrigation method (sprinkler or flood), and surface water source.
- The WWUM Regionalized Soil Water Balance Model (CropSim) report describes the development of the climate data and soil moisture parameters, as well as the effective precipitation and consumptive use methodologies used to estimate potential consumptive use and net irrigation requirement for the entire WWUM study area.
- WWUM Historical Consumptive Use Report describes the development of the North Platte River Basin StateCU consumptive use model. This document, revised in July 2014, summarizes the process and results of developing the irrigation water requirement by modeled structure used in the Baseline Model, and the on-farm water balance components used to estimate actual crop consumptive use.
- The Ground Water Flow Model for the Southern Half of the Nebraska Panhandle describes the development of the MODFLOW ground water model for the North Platte and South Platte NRD areas. This document summarizes the process of integrating historical pumping and recharge information, as well as the model development process and the results from the model.

Data Management Interfaces

DMI's read commands to create formatted input files, as well as read output files. The DMI's are available for download from the Colorado Decision Support System website (cdss.state.co.us)

StateDMI – generally used to create files that contain physical properties associated with structures and stations, including water rights information.

TSTool – generally used to create files that contain time-series data associated with structures and stations, including streamflow measurements, acreage, and diversion records.

Data-centered = Command Driven. Command files are developed to create and format the input files required for StateCU and StateMod.

- Input files can be easily revised or updated to include additional periods
- Input files can be reproduced
- Input files are transparent and self-documenting because each command use to create an input file is stamped in the header

Data-centered command files use the following general approach to create each StateCU and StateMod input file:

- 1. "Read" information from HydroBase or another external database source
- 2. "Set" missing information or overwrite incorrect data
- 3. "Fill" missing time-series data using monthly averages, regression relationships, etc.
- 4. "Write" information to create the input file

To facilitate the data-centered approach and allow command files and model input files to be shared and easily updated, modelers have adopted a standard File Directory and file naming convention.

Standard file extensions are referenced throughout this and other CDSS documentation. These are recommended extensions for consistency and to facilitate file sharing.

Modeling Directory Structure

Directory	Application(s)	Description of Files Creating
.\StreamSW	SW	Stream files associated with StateMod, the surface water model.
		Stream stations (*.ris). Historical stream flow time series (monthly
		.rih and daily .rid), stream estimate coefficients (.rib), etc.
.\Diversions\Delay	SW	Tables used to set accretion/depletion locations and timing (*.rtn)
		used to develop station files.
.\Diversions	SW, CU and	Diversion station (*.dds) and rights (*.ddr). Monthly historical
	GW	diversions (*.ddh) and demand time series (*.ddm). Daily historical
		diversions and demand time series (*.ddd). Surface water
		aggregation and multi-structure lists.
.\Instream	SW	Instream Flow station (*.ifs) and rights (*.ifr). Instream demands
		(average monthly *.ifa, monthly *.ifm and daily *.ifd)
.\Reservoir	SW	Reservoir station (*.res) and rights (*.rer). End of Month Content
		(*.eom) and Target Time Series (*.tam). Evaporation files (*.eva)
.\Wells	SW and CU	Well station (*.wes) and rights (*.wer). StateMod Historic time series
		(*.weh) and Demand time series (*.wem). StateCU historic pumping
		time series (*.gwp). Well aggregation parcel lists.
.\Network	SW	StateMod network (*.net).
.\DocSW	SW	Documentation associated with a Surface Water Application
.\StateMod	SW	StateMod Model Files (all input and output data for a surface water
		application)
.\Crops	CU	Crop Characteristics (*.cch), Crop Coefficients (*.kbc), and Crop
		acreage distribution (*.cds).
.\Location	CU	CU location (*.str) and Irrigation time series (*.ipy). Climate station
		assignment list. Soil AWC assignment list. Efficiency assignment list.
.\DocCU	CU	Documentation associated with a Consumptive Use Application
.\StateCU	CU	StateCU Model Files (all input and output data for a surface water
		application)

StateMod Overview

StateMod is a general purpose surface water allocation model that simulates diversions to meet a demand based on the Prior Appropriation administration

system. It can be adapted to any river basin through unique user-supplied data sets; the data set defines the basin. Complete data sets are required; missing data need to be estimated for input files. StateMod operates on a linked node network; nodes are locations where you have or need information.

- Stream Gages
- Diversion Points
- Reservoirs
- Return Flow/Discharge Locations
- Return Flow Obligation Locations

StateMod Key Points:

- Natural flow is the amount of water that would be present if man wasn't there.
- Operates based on Prior Appropriation, identifies most senior water right in the model.
- Allocates water based on the minimum of (demand, water right, capacity, available flow).
- Future scenarios are based on hydrology as if it were to occur again in the future, hydrology is not projected.
- Operating rules are necessary for anything more complex than a direct diversion to a demand.

Model Components

Model Operations

StateMod operates based on the **Modified Direct Solution Algorithm**. *See Section 7.9 in the StateMod Documentation for more information*.

- 1. Identify most senior water right in the model
- 2. With natural inflow and/or return flows from previous time steps included, estimate the diversion amount based on the minimum of:
 - Demand
 - Water Right
 - Structure Capacity
 - Available Flow
- 3. Adjusts downstream flows to reflect senior diversions and immediate return flows
- 4. Future return flows are calculated
- 5. Repeated for next junior water right

1) Priority 1: Diversion = min (demand, water right, capacity, available flow) = min(20, 10, 30, 25) = 10 cfs

- 2) Demand decreased to 20 10 = 10 cfs
- 3) Diversion structure capacity decreased to 30 10 = 20 cfs
- 4) Available flow decreased to 25 10 = 15 cfs

5) Priority 2: Diversion = min (demand, water right, capacity, available flow) = min(6, 4, 12, 15) = 4 cfs

- 6) Demand decreased to 6 4 = 2 cfs
- 7) Diversion structure capacity decreased to 12 4 = 8 cfs
- 8) Available flow decreased to 15 4 = 11 cfs

9) Priority 5: Diversion = min (demand, water right, capacity, available flow) = min(2, 3, 8, 11) = 2 cfs

10) Demand decreased to 2 - 2 = 0 cfs Demand is Satisfied

11) Available flow decreased to 11 - 2 = 9 cfs

12) Priority 6: Diversion = min (demand, water right, capacity, available flow) = min(10, 11, 20, 9) = 9 cfs

- 13) Diversion structure capacity decreased to 20 9 = 11 cfs
- 14) Demand decreased to 10 9 = 1 cfs Demand is Not Satisfied

15) Available flow decreased to 9 - 9 = 0 cfs

16) Priority 6.1: Reservoir Release = min (demand, capacity, reservoir storage) = min(1, 11, 1000) = 1 cfs
17) Diversion structure capacity decreased to 11 - 1 = 10 cfs
18) Demand decreased to 1 - 1 = 0 cfs Demand is Satisfied

Control & Network File Development

Response File (*.rsp)

- Lists the files to be included in the analysis.
- Only include files necessary for the analysis.
- Output files adopt the name of the response file, use unique response file names to track scenarios.

Control File (*.ctl)

- Lists model control options.
- Includes comments, period of record, output options, use of well files, daily or monthly simulation.

Western W	later Use Man	agement Model (WWUM Model) Made in
Historica	I Simulation	Taxt Editor
1933	: iystr :	STARTING TEAR OF STRUCTURE OF
2013	: Iyena	ENDING HEAR OF SIMULATION
2	: Iresop	UNIFOR UNIT OFFICE. I FOR [CFS], Z FOR [AF], S FOR [AF]
2	: moneva	THE OF STREAM INFORM INFORMATION FOR 2 FOR CALLS
2	. ipilo	NO OF DECEDENTATION STATIONS
1	. numera	
-1	· interv	NO. OF TIME INTERVALS IN DELAY TARLE MAXIMIM=60
1,9835	: factor	FACTOR TO CONVERT CFS TO AC-FT/DAY (1,9835)
1,9835	: rfacto	DIVISOR FOR STREAM FLOW DATA: FINTER 0 FOR DATA IN cfs. ENTER 1.9835 FOR DATA IN af/mo
1,9835	: dfacto	DIVISOR FOR DIVERSION DATA: ENTER 0 FOR DATA IN cfs. ENTER 1.9835 FOR DATA IN af/mo
0	: ffacto	DIVISOR FOR IN-STREAM FLOW DATA: ENTER 0 FOR DATA IN cfs. ENTER 1.9835 FOR DATA IN af/mo
1.0	: cfacto	FACTOR TO CONVERT RESERVOIR CONTENT TO AC-FT
1.0	: efacto	FACTOR TO CONVERT EVAPORATION DATA TO FEET
1.0	: pfacto	FACTOR TO CONVERT PRECIPITATION DATA TO FEET
CYR	: cyr1	Year type (a5, All caps, right justified !!)
1	: icondem	1=no add; 2=add, 3=total demand in *.ddm
0	: ichk	0 = off, 1=print river network, -n= detailed printout at river node ichk
0	: ireopx	Re-operation switch (0=re-operate;1=no re-operation)
1	: ireach	Switch for instream flow reach approach (O=No insream flow reach approach, 1=Instream reach appr
0	: icall	Switch for detailed call data (0=no detailed call data; 1=yes detailed call data)
0	: ccall	Detailed call water right ID (not used if icall=0)
0	: iday	Switch for daily calculations (0=monthly analysis; 1=daily analysis)
1	: iwell	Switch for well operations (0=no wells in *.rsp;-1=no wells but in *.rsp;1=yes wells no max limi
0	: gwmaxrc	Constant maximum recharge limit (cfs); only used when iwell = 2
0	: isjrip	Switch for an annual San Juan Recovery Program Sediment file
10	: itsfile	Switch for an annual time series file (-1=no *.tsp but in *.rsp,0=no tsfile,1=RGDSS GW acres ts
1	: ieffmax	Switch for irrigation water requirement (IRW) file
0	: isprink	Switch for sprinkler data (area and efficiency) use (0=off, 1=Maximum Supply, 2=Mutual Supply
3	: soild	Switch for soil moisture accounting

River Network File (*.rin)

- List of all structures, with upstream and downstream structures.
- Generated from the graphical Network File.
- <u>Read</u> by StateMod.

#>	ID	cstaid:	Station I	D		💙 StateDMI 📄
#>	Name	stanam:	Station r	name		
#>	Downstr	eam cstadn:	Downstrea	am node ID		
#>	Comment	comment:	Alternate	identifier/c	omment.	
# >	GWMax	gwmaxr:	Max recha	arge limit (cf	s) - see iwell	in control file.
#>		-		- · ·		
#>	ID	Na	ame	DownStream	Comment	GWMax
#>-		eb		-ebe	xbex	.bе
066	80700	Winters Creel	c at Tri-St	a01311 C2	06680700	-999
013	11 C2	Enterprise W:	intersCrkCa	r01311 207	01311 C2	-999
013	11 207	EnterpriseCan	nal URF207	05701 C1	01311 207	-999
057	01 C1	WintersCreek	WintersCrk	C05701 202	05701 C1	-999
057	01 202	WintersCreek	Canal URF20	205701 201	05701 202	-999
057	01 201	WintersCreek	Canal URF20	105701 29	05701 201	-999
057	01 29	WintersCreek	Canal URF29	06681000	05701 29	-999
066	81000	Winters Creel	k near Scot	t03563	06681000	-999
035	63	MinatareCana:	L	00746	03563	-999
007	46	CastleRockCar	hal	06682000	00746	-999
066	82000	NPR near Mina	atare, NE	03778	06682000	-999
037	78	NinemileCana	L	04803	03778	-999

Made in

Streamflow Gage Input File Development

Streamflow Gage Station File (*.ris)

• List of streamflow gages and any un-gaged nodes with natural flow

Made in StateDMI

#> #>	ID Name		crunid: runnam:	Static Static	on ID on name		7/	
# >	River	ID	cgoto:	River	node with	stream	gage	
#>	Daily	ID	crunidy:	Daily	stream st	ation I	D.	
#>								
#>	ID		N	ame	Ri	ver ID	Daily ID	
#>-		eb			eb		-exbe	<u>-</u>
000	64	A	llianceCan	al	000	64	06684500	
000	64 C1	A	lliance Re	dWillow	Carrie000	64 C1	06684500	_
002	83	В	eerlineCan	al	002	83	06686000	
005	34	В	elmontCana	1	005	34	06684500	
005	34 C1	В	elmont Ced	arCreek	c 005	34 C1	06686000	
007	46	С	astleRockC	anal	007	46	06682000	
007	54	С	entralCana	1	007	54	06682000	
007	94	С	himneyRock	Canal	007	94	06684500	

Streamflow Gage Historical Flow File (*.rih)

- Historical time series of streamflow records
- Used for calibration only, can have missing data.

#> Yr TD	Jan	Feb	Mar	Apr	May	Jun	Jul	Δυσ	Sen	Oct	Nov	Dec	Total
#>-e-b	ebeb	eb	eb	e	beb)el	bel	bel	beb	eb	eb	eb	e
1/1933 -	12/2014	ACFT CY	R										
1962 06656000	106.	10365.	17598.	64166.	171454.	28364.	206324.	285803.	188194.	3416.	1092.	83.	976965.
1962 06657000	15.	344.	1157.	3931.	43581.	12809.	60812.	79697.	26273.	5046.	1729.	131.	235525.
1962 06670500	4774.	6236.	7329.	8529.	8541.	13291.	10534.	3892.	4435.	4681.	5028.	5260.	82530.
1962 06670900	-999.	-999.	-999.	-999.	-999.	-999.	-999.	-999.	-999.	-999.	-999.	-999.	-999.
1962 06671000	605.	688.	740.	913.	1761.	4334.	812.	609.	1615.	1573.	1059.	986.	15695.
1962 06672500	308.	372.	385.	317.	1533.	1295.	1648.	2640.	3223.	895.	641.	542.	13799.
1962 06673500	363.	360.	436.	349.	1147.	1323.	2670.	2709.	3527.	825.	554.	499.	14762.
1962 06674500	11141.	14087.	15818.	17330.	42947.	42528.	59255.	68875.	40636.	30933.	20797.	18804.	383151.

Diversion Structure Input File Development

Diversion Station File (*.dds)

- Lists all the physical information about diversion structures; including name,
- ID, capacity, efficiency and return flow patterns and locations.
- Operational capacities were based on sum of water rights or maximum sustained diversion.
- Return flow locations, generally read in from an external file (*.rtn).

		-			
03563	MinatareCanal	03563	1	135.00	Made in
		00746	14.00	24043	StateDMI
		06682000	14.00	25046	
		06682000	14.00	25052	$ \land \land $
		04803	14.00	31056	
		03778_C1	15.00	29058	
		04803	15.00	31061	
03563_43	MinatareCanal_URF43	03563_43	1	9999.00	1 0
			1	6	65. 999.00
		00746	10.00	1	
		06681000	4.00	21043	
		03563	14.00	22043	
		00746	52.00	24043	
		06682000	17.00	25043	
		03778 C1	3.00	29043	

WWUM Model Integration Point:

The accretion return flow location file (*_SW.rtn) is a table used to set accretion locations and timing. This information was obtained from the WWUM GW Model and input directly into the StateMod model. This integration allows the SW model to accrete subsurface irrigation and canal recharge to the river at a similar location with similar timing as experienced by the GW Model. This file also contains a calibrated percentage of overland irrigation returns, which was integrated back in the WWUM GW Model.

Diversion Rights File (*.ddr)

- Lists direct flow water rights and associated CFS amounts
- Water right format designated by yyyy.mmdd
- "Store" water rights (*.50) reflect CFS amounts based on Glendo/Warren Act contract storage volumes; priority junior to direct rights.

#> ID #>EndHeade #>	Name r	Struct	Admin #	Decree	Made in StateDMI
00064.01	Alliance Canal - Baya	rd 00064	1892.12260	36.12	
00064.02	Alliance Canal - RedW	ill00064 Cl	1892.12260	51.64	1
00064.03	Alliance Canal - RedW	ill00064_C1	1912.02280	2.00	1
00165.01	Burbank Ditch	00165	1891.11060	4.43	1
00165.02	Burbank Ditch	00165	1898.04120	0.71	1
00165.50	Burbank Ditch-Store	00165	1993.00030	3.30	1
00187.01	Torrington Canal	00187	1891.11280	34.51	1
00187.50	Torrington Canal-Stor	e 00187	1993.00060	16.50	1
00283.01	Beerline Canal	00283	1894.10130	14.19	1
00283.50	Beerline Canal-Store	00283	1993.00160	27.00	1

See the WWUM Water Resources Model User's Manual for the complete water rights "straight line"

Historical Diversion File & Diversion Demand File (*.ddh &*.ddm)

- Time series of historical diversions or calculated/baseline demands in acrefeet.
- Total headgate diversions were distributed to each URF based on pro-rata NIR.
- Diversion structures with associated URF demands are operated as carriers and set to zero.

Delay File (*.dly)

- Patterns indicate the percentage of lagged accretions or depletions that impact a stream zone in each time step.
- Each pattern represents a specific stream zone/URF combination; the first two digits are the stream zone, the last three are the URF zone.
- Patterns developed through unit pumping simulations of the WWUM GW Model.
- Delay patterns and locations are assigned in the diversion station file (*.dds and *.wes).

12013	93									Made in	>
	29.927	15.326	10.182	7.311	5.535	4.283	3.422	2.772	\leq		
	1.653	1.427	1.241	1.093	0.969	0.866	0.781	0.703	0.6377	Text Editor	
	0.523	0.48	0.437	0.4	0.366	0.337	0.31	0.286	0.26		
	0.228	0.211	0.195	0.181	0.168	0.156	0.145	0.134	0.125		\geq
	0.11	0.103	0.096	0.09	0.084	0.078	0.074	0.068	0.064	0.00	-
	0.057	0.053	0.05	0.048	0.045	0.042	0.039	0.037	0.035	0.033	
	0.031	0.029	0.027	0.026	0.025	0.024	0.023	0.021	0.02	0.019	
	0.018	0.017	0.017	0.015	0.015	0.014	0.013	0.012	0.012	0.011	
	0.01	0.01	0.009	0.009	0.008	0.007	0.007	0.006	0.006	0.006	
	0.005	0.005	0.004								
13013	127										
	1.072	3.826	5.666	6.314	6.32	6.007	5.587	5.117	4.673	4.297	
	3.913	3.579	3.273	3.007	2.755	2.526	2.328	2.148	1.974	1.807	
	1.662	1.543	1.423	1.319	1.221	1.135	1.051	0.976	0.908	0.844	
	0.785	0.727	0.675	0.63	0.585	0.546	0.509	0.477	0.444	0.415	
	0.388	0.362	0.337	0.314	0.29	0.272	0.254	0.238	0.222	0.209	
	0.197	0.183	0.171	0.159	0.148	0.139	0.129	0.121	0.112	0.106	
	0.1	0.092	0.086	0.083	0.077	0.072	0.067	0.063	0.058	0.055	
	0.052	0.048	0.045	0.042	0.04	0.037	0.036	0.032	0.031	0.029	
	0.027	0.024	0.023	0.022	0.021	0.021	0.019	0.018	0.016	0.016	
	0.015	0.013	0.013	0.012	0.011	0.011	0.011	0.009	0.009	0.009	
	0.008	0.008	0.007	0.007	0.007	0.006	0.006	0.005	0.005	0.005	
	0.004	0.004	0.004	0.004	0.004	0.003	0.004	0.003	0.004	0.002	

WWUM Model Integration Point:

 Information in the Delay File (*.dly) was obtained from the WWUM GW Model and input directly into the StateMod model. This integration allows the SW model to accrete recharge and deplete pumping at a similar location and with similar timing as experienced by the GW Model.

Consumptive Use Input Files – StateCU Interaction

StateCU provides the following information to the StateMod model:

- Available water capacity information from the Structure File (*.str) for soil moisture volume.
- Conveyance and on-farm application efficiencies from the Irrigation Parameter File (*.ipy) for the on-farm water balance.
- Monthly irrigation water requirement from the Net Irrigation Requirement File (*.rcr, *.ddc) for the calculated demands.

Variable Efficiency Approach

Although efficiencies are used to calculate headgate demands based on crop irrigation requirements, there is not always enough water to meet full headgate demands. When ditches are "water short", irrigators generally are more efficient in their practices; therefore less water (as a percentage of diversion) returns to the river.

StateMod has the option to use the "variable efficiency" approach for agricultural demands. Diverted water is compared each time-step to CIR and efficiencies are allowed to vary up to a maximum defined by the user. CIR values are estimated using StateCU and read directly by StateMod.

Reservoir Input File Development

RES File	EVA File	RER File	EOM/TAM Files	OPR File
 Area/Capacity Accounts Evap. Pattern 	• Net evap. rates	 Storage rights 1st/2nd Fill 	• Time Series of Historical or Baseline Contents	Rules to fill and release

Reservoir Station File (*.res)

- Lists all the physical information about reservoirs; including name, ID, area/capacity table, evaporation pattern, accounts, initial and maximum volume.
- Inland Lakes aggregated together into one lake; operated as one.
- Reservoir accounts used to separate ownership in the reservoir; operating rules can tie water rights and releases to a specific account.

							_	St	tateD	MI
#> #> ID		Na	me	N	ode O	n/Off R	Date	Dail	\wedge	
#> #>	-eb		VolMin	eb VolMax	eb- FloMax D	eb- ≥adSt Nu	exb- mOwner Nu	mEva Ju	fe nPre um	Tab
#>xxxxxxxx	*****	xxx	beb	eb	eb	eb-	eb	eb	eb	e
#>			OwnNam	e OwnM	ax Sto-	l EvapTy	p FillTyp			
#>xxxxxxx	******	xxx	b	eb	eb	-eb	-eb	e		
# >			Evap Id	Evap	Wt					
#>xxxxxxx	******	xxx	b	eb	е					
#>			Prec Id	Prec	Wt					
#>xxxxxxxx	******	xxx	b	eb	е					
#>			Cont	Area	Seep					
#>xxxxxxxx	******	xxx	beb	eb	е					
<pre>#>EndHeade:</pre>	r									
# >										
InlandAg	Inland La	kes	Agg Res	Inlan	dAg	1	-1.			
			ο.	73640.	880.	0.	1	1	0	8
	Lowline_I	rri	73640.	73640.	0	1				
	Evaporati	on	10001	1	00.					
	CAP-AREA	0	0.00	0.00	0					
	CAP-AREA	1	7551.	750	0					
	CAP-AREA	2	9468.	1250	0					
	CAP-AREA	3	17655.	1750	0					
	CAP-AREA	4	30869.	2250	0					
	CAP-AREA	5	44737.	2750	0					
	CAP-AREA	6	73640.	3521	0					
	CAD-ADEA	7	000000	3600	0					

Made in

Evaporation File (*.eva)

- Represents monthly <u>net</u> evaporation rates in feet, if gross evaporation is used, a precipitation file must also be created and included in the response file.
- Values based on average USBR evaporation on Inland Lakes.
- Can provide monthly time series or average annual.
- Define evaporation pattern in the reservoir station file (*.res).
- StateMod estimates the surface area of the reservoir each month based on an interpolation of the area/capacity table, and multiplies the surface area by the monthly rate to determine evaporation.

																iviade il	n /
4	NA ID				Jan	F	eb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Text Edit	or 🔁
+	‡ -e-b			eb	eb		-eb	eb-	eb	eb-	eb-	eb-	eb-	eb-			þ
	01/	0	-	12/	0	FT	CYR									$ \land \land$	
	100	001		0.	0495	0.0	67	0.127	0.244	0.3696	0.452	0.534	0.456	0.288	0.185	0.07 V 0	47

Reservoir Right File (*.rer)

- Lists reservoir storage rights and associated acre-feet amounts
- Set accounts to receive water stored under a storage right.
- Water right format designated by yyyy.mmdd

#> #> ID	Name	Res ID	Admin #	Decree	On/Off Owner	туре	Fill #	
<pre>#>el #> #>EndHeader #></pre>	b	ebeb	e	beb)eb	eb	-eb	Made in StateDMI
Inland.01	Inland Lakes	InlandAg	1904.12061	73640	1	1	1	

Historical Reservoir Contents File & Reservoir Target File (*.eom &*.tar)

- Time series of historical end-ofmonth contents or capacity targets in acre-feet.
- Daily historical EOM contents available from USBR, aggregated to monthly.
- Historical contents used for historical calibration scenarios, targets (generally set to capacity) used in simulation scenarios.

#> Y	r ID	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
# >-е	-b	-ebeb	ek	oeb	eb	eb-	e							
	1/1933 -	12/2013	ACFT CY	(R										
1933	InlandAg	15000.	15000.	15000.	15000.	15000.	15000.	15000.	15000.	15000.	15000.	15000.	15000.	180000.
1933	InlandAg	69000.	69000.	69000.	69000.	69000.	69000.	69000.	69000.	69000.	69000.	69000.	69000.	828000.

Additional Input Files

The input files above are those generally used to represent a majority of the dynamic operations in the river basin. There are additional input files associated with this model that follow the general file setup (i.e. files ending in "s" are structure files, files ending in "r" are rights files). The following should be noted about the development of these input file groups:

Instream Flow Files (*.ifs, *.ifr, *.ifa)

- Instream flows, or non-consumptive instream demands, were used to simulate the downstream call in the model.
- North Platte Irrigation Ditch, with an 1884 right of 201 cfs, was included as the downstream call.
- Additional instream flow structures can be implemented to simulate downstream demands for future scenarios.

Well Files (*.wes, *.wer, *.weh/*.wem)

- Structures with supplemental pumping and structures with ground water only demands are both included in the well files.
- Ground water only structures are designated with "NE_GW" followed by the URF zone.
- Well depletions are designated in the depletion location file (*_GW.rtn), which is similar to the accretion return flow location file discussed above.
- Well right file reflects each well in each URF, including its capacity, an ondate corresponding to the year the well first irrigated, and a senior priority.

WWUM Model Integration Point:

- The depletion location file (*_GW.rtn) is a table used to set depletion locations and timing. This information was obtained from the WWUM GW Model and input directly into the StateMod model. This integration allows the SW model to deplete the river at a similar location with similar timing as experienced by the GW Model.
- Historical pumping is input into the SW model and reflects the calibrated pumping developed in the StateCU analysis. Metered pumping, as provided by the NPNRD, is aggregated by URF and input into the model reflecting the pumping demands for recent years.

See the StateMod Documentation and WWUM Water Resources Model User's Manual for more information on the format, content, and development of these files.

Operating Rules

Any operations in the model more complex than a direct right diversion or pumping to meet an irrigation demand must be simulated using operating rules. StateMod operating rules direct water to be diverted or transferred from a Source to a Destination with a particular Delivery Method.

River Diversion Rules: Fill Reservoir via Carrier Ditch under the reservoir right. Source: Reservoir Water Right Carrier: Carrier Ditch Destination: Reservoir Rule No.: Type 11 or 45 Priority: Set to Reservoir Right

Divert for irrigation at URF Irrig. Demand via Carrier Ditch under direct right. Source: Ditch Water Right Carrier: 0400524 Destination: URF Irrigation Demand Rule No.: Type 11 or 45 Priority: Set to Direct Right

Operating Rules most commonly used in the WWUM SW Model:

Type 3 – a release from storage directly to a carrier (a ditch or canal as opposed to the river), for delivery to a demand structure. Typically, the reservoir supply is supplemental, and its release is given an administration number junior to direct flow rights at the destination structure. A release is made only if demand at the demand structure is not satisfied after direct flow rights have diverted. In the WWUM Model, the Type 3 operating rule is used to release water from the Inland Lakes reservoir system to the Pathfinder Irrigation District demands downstream of the reservoirs.

- Type 11 a direct flow diversion to demand structure or reservoir through an intervening carrier. It uses the administration number and decreed amount of the direct flow right associated with the carrier, regardless of the administration number assigned to the operating right itself. In the WWUM Model, the Type 11 operating right is used to carrier a direct flow diversion to a URF-based demand structures.
- Type 45 Type 45 operates the same as Type 11, allowing a direct flow diversion to demand structure or reservoir through an intervening carrier, however it allows the carrier loss (e.g. "Carriage Loss Agreement") to be defined in the operating rule. It uses the administration number and decreed amount of the direct flow right associated with the carrier, regardless of the administration number assigned to the operating right itself. In the WWUM Model, the Type 45 operating right is used both as a direct flow diversion to URF-based demand structures, and as a direct flow diversion to the Inland Lakes reservoir system.

- Many variables and flags are available for each operating rule depending on the operating rule type. Refer to Section 4.13 in the StateMod Documentation for discussion on the operating rule variables.
- Use Decision Trees from the StateMod Documentation to assist with operating rule selection and understanding.

STATEMOD OPERATING RULES DECISION TREE **Operating Rule Types Based on Source Reservoir Source** - Reservoir Delivery via Delivery Delivery via Bookover via the Carrier the River by River Exchange Destination Destination Destination Destination Diversion (D) or Reservoir (R) -Diversion (D) - TYPE 4 Instream Flow - TYPE 1 Reservoir Accounts - TYPE 6 TYPE 3 Diversion (D) or Reservoir (R) - TYPE 2 Reservoir (R) - TYPE 5 If Limited by OOP Diversion (D) or (R) With Reuse Plan – (D) or (R) With Reuse Plan – TYPE 32 Carrier (C) - TYPE 7 - TYPE 8 **TYPE 32** Reservoir Target- TYPE 9 (D), (R), or (C) With Reuse With Reuse Plan or OOP Plan Replacement Reservoir Beneficiaries -Plan – TYPE 33 Destination – TYPE 34 **TYPE 10**

STATEMOD OPERATING RULES DECISION TREE

Operating Rule Types Based on Source Direct Flow Right

Inflow Hydrology

StateMod operates based on Natural Flows (a.k.a. Baseflows), which ideally would flow in the river before man's influence. The WWUM Model begins at Whalen Dam in Wyoming; therefore Natural Flow for this model is a combination of historical gaged inflows and natural flow "gains" based on precipitation recharge.

- **Historical streamflow gage records** were used as Natural Flows for major tributaries on the river (i.e. not drains or tributaries with flow generated primarily from return flows.
 - o North Platte River below Guernsey Reservoir, WY
 - o Laramie River, WY
 - o Rawhide Creek, WY
 - o Pumpkin Creek, NE
- **Overland inflows** were estimated by CropSim as the portion of the historical precipitation that is not recharged and reaches rivers and tributaries via surface runoff.
- **Subsurface inflows** were estimated using the WWUM GW Model, whereby precipitation recharge is lagged back to rivers and tributaries and enters the model as natural flow "gains".

The time series of these Natural Flows formatted using TSTool and input into the model using the Natural Flow Data File (*.xbm)

WWUM Model Integration Point:

• Natural Inflows are usually generated within the StateMod program; instead, this information was developed using WWUM Model applications and input directly into the StateMod Model.

Running StateMod

StateMod is a FORTRAN based executable with a separate graphical user interface (GUI) that can be used to view and edit input files. An existing StateMod scenario must exist for use with the GUI; the GUI cannot be used to create a new scenario "from scratch". Viewing existing model information through the GUI can be helpful, as information from several files can be viewed from single screen.

🔿 Statel	lod - cm2009B - Diversions									
ID	NAME			Div	version	ID: 360	645			
360606	ELLIOTT CREEK FEEDER	~		Divers	tion Nan	ne: GUT	HRIE THO	OMAS DI	тен	
360645	GUTHRIE THOMAS DITCH			Dive			045		1011	
360649	Hamilton Davidson Div Sy			Rive	er Node	ID: 360	645			
360660	HIGH MILLER DITCH			Capac	city (CF:	S): 37.3	38			
360662	Hoagland Div Sys			On/O	off Swite	ch: 1 - 0	n 🗸			
360671	INDEPENDENT BLUE DITCH				oor Non				тен	
360687	KIRKWOOD DITCH		_		- -		TINE III	JIMAS DI	ron	
360709	LOBACK DITCH		Rep	placement H	Reservo	oir: -1 - P	Provide d	epletion r	eplaceme	nt 🗡
360725	MARY DITCH				Use typ	pe: <mark>1 - In</mark>	rigation	*		
360728	MAT NO 1 DITCH			Irrigated	acreag	ge: 355	.96			
360729	MAT NO 2 DITCH		h	- Ionthly den	- nand tvr	ne:1 - M	onthiv tot	el demor	vd.	~
360734	MCKAY DITCH		In the second	Demon	nana typ	рс. 1 - IW	ontriny to	aracmar		
360765	PALMER-MCKINLEY DITCH			Deman	nd Sourc	ce: 1 - In	rigated ad	cres from	i GIS	Y
360780	PLUNGER DITCH			Dai	ily Data	ID: 4 - UI	nknown			× .
360784	RANKIN NO 1 DITCH		Ava	ilable Wate	er Conte	ent: 0.0				
360796	SAUMS DITCH		-System Efficiency							-
360800	SLATE CREEK DITCH		~ · · · · · · · · · · · · · · · · · · ·							
360801	SMITH DITCH		Constant efficiency	43.0						Related Data
360829	STRAIGHT CREEK DITCH			Oct	Nov	Dec	Jan	Feb	Mar	Return Flow
360841	TENMILE DIVERSION NO 1		A	39.0 🗧	54.0	54.0	54.0	54.0	54.0	Vertex Distance
360868	WESTLAKE DITCH		Monthly efficiency	Apr	May	Jun	Jul	Aug	Sep	vvater Rights
360881	GREEN MTN HYDRO-ELECTRIC			51.0 4	43.0	22.0	25.0	27.0	37.0	
360908	KEYSTONE SNOWLINE DITCH							-	-	<u>⊣</u>
360989	MAGGIE POND (SNOV/MAKING)		Time Series							
361008	BRECKENRIDGE PIPELINE		Historical Diversion ((Monthly)		Dem	ands (M	onthly)		Irrigation Practice (Yearly)
361016	COPPER MTN SNOWMAKING		Ulistania al Dinanaian (The last				en un de la ch	farmhle ba S	
364626	VIDLER TUNNEL COLL SYS		- Historical Diversion (Daily)		Dem	iands, ON	remide (N	iontniy)	Consumptive vvater Requirement (Monthly)
364683	CON-HOOSIER SYS BLUE R D		Historical Diversion,	Estimated ((Daily)	Dem	iands, Av	/erage (N	fonthly)	Consumptive Water Requirement (Daily)
364684	BLUE RIVER DIVR PROJECT	~	Aleter Right (Monthly	.		Dem	ands (Da			Consumptive Mater Requirement, Estimated (Daily)
-Search ab	ove list for:			r)		-				
⊙ ID			VVater Right (Daily)			Dem	hands, Es	timated (Daily)	Graph
🔘 Name										Apply Cancel Close
	Find Next									

Note that edits made through the GUI remove the data-centered "transparency" inherent in the use of command files to create model input. Changes made to model inputs through the StateMod GUI are not "stamped" in the header of the associated input files. Therefore if command files are later used to update the model input, for example to extend the study period, revisions made through the GUI will not be reflected.

The StateMod Executable, GUI, and Documentation are available for download from the Colorado Decision Support System website (cdss.state.co.us)

Tip: Changes made through the StateMod GUI should be tracked and documented. As the changes are determined to be appropriate and "permanent", the command files should be revised to reflect the revisions.

The StateMod executable can be run through the StateMod GUI which will automatically enable an MS-DOS command window. If the GUI is not used, the user will need to open an MS-DOS window and navigate to the StateMod subdirectory where the scenario input files are saved. The StateMod executable

should be saved to that subdirectory.

In the DOS Window, Type "StateMod scenario name" where the scenario name is defined by the name of the response file (*.rsp). The Scenario Name tells the model to read the input files listed in the *.rsp file. Once the scenario is loaded, the following options are available:

Enter "4" to perform a Data Check of the model input files. StateMod will run through the input files making sure they are complete and without errors. If successful, review the Check File (*.chk). If unsuccessful, review errors shown in the Log File (*.log). The following output files are provided by the Data Check option. These files, the Check File, and the Log File are written to the StateMod subdirectory that contains the *.rsp file.

- Natural Flow File (*.xcb)
- Direct Demand File (*.xcd)
- Instream Demand File (*.xci)
- Well Demand File (*.xcw)
- Input Summary File (*.xtb)
- Water Rights List File
- Log File (*.log)
- Check File (*.chk)

Note that all the output files associated with the Data Check options will have the same prefix as the response file. Section 5 of the StateMod Documentation provides information on all of the output files produced by Data Check and other Modeling Options.

Tip: Document any issues identified in the input files, and modify command files as necessary to address errors. Note that following the command-driven process where input files "build" on each other is the best way to minimize issues. Note that warnings do not necessarily indicate serious issues, but should be reviewed and documented. For example, a warning will be generated if a return flow location for a structure is to a different tributary.

Simulation

Enter "2" to perform a Simulation of the model. StateMod will show the progress of the simulation in the DOS window. Option 3 automatically creates standard output reports discussed in the next section. To simulate without reports, option 8 can be selected.

The model simulation will end with a "Successful Termination" message. Be sure to review the *.log file for warnings and errors identified during the simulation. Additional reports are available by selecting option 3, as discussed in Section 5 of the StateMod Documentation and shown.

eport enter one of the following Stop (NA) Stop (NA) Data Printed to Binary files (*.xbn, *.xbr Detailed Node Accounting (*.xnm,*.xna) Water Balance (*.xwb, *.xgw) Water Right List (*.xwr) Water Supply (*.xsu) Graph Data for Reservoirs (*.xrg) Graph Data for Diversions and Gauges (*.xdg) Commarison for Reservoirs (*.xrc) 2345678 Comparison for Reservoirs (*.xrc) Coomparison Diversion (*.xdc) Consumptive Use Model Report (*.xcu, *.xsu, *.xsh, *.xev, *.xwd) 9 10 Stream Information File Report (*.xrx) Comparison Stream (*.xsc) Standard Reports (*.xdd, *.xre, *.xop, *.xir 13 .xss) Shortage Summary (*.xsh) Structure List (*.xdl) 16 17 18 19 Selected Parameter (*.xsp, *.xs2) Graph Data for Wells (*.xwg) Comparison for Wells (*.xwc) Daily Selected Parameter (*.xds, *.xd2) No Log (NA) Plan Summary (*.xpl) Well Plan Summary (*.xwp) Aug plan to Well Structures (*.xpw) 20 Report (*.xrh)

StateMod Model Output Files

Several output files are available from StateMod, as summarized in Section 5 in the StateMod Documentation.

Binary Files (*.b*) are more compact in size and accessed by TSTool to review output data. Information (columns) summarized in output are individually available for each structure in the model. Binary files allow for ease of comparison, graphing and export capabilities.

Comman	nd Prompt	
03/09/2010 03/09/2010 03/09/2010 03/09/2010 03/09/2010 03/09/2010	10:56 AM 10:56 AM 10:56 AM 10:56 AM 10:56 AM 10:56 AM 6 File(s) 0 Dir(s)	702,880 ThornB.b43 234,400 ThornB.b44 28,176 ThornB.b45 572 ThornB.b47 239,316 ThornB.b67 321,840 ThornB.b68 1,527,184 bytes 107,086,389,248 bytes free

Standard Output Reports:

- Diversion Output File (*.xdd) describes diversion and streamflow data at all river nodes. The report summarizes the structure demand, supply (from the river, carrier, storage, etc.), shortages, non-consumed returns and a hydrologic station balance of the inflow and outflow of the river at the structure location for each month of the study period. Available Flow (Column 29) represents the amount of physical flow at the node location that is available for diversion by a junior water right after all of the other model priorities have been simulated.
- Reservoir Output File (*.xre) describes diversion, release, storage and streamflow data at reservoir nodes. The report summarizes the reservoir contents, supply (from the river or carrier), releases, evaporation, seepage, and a hydrologic station balance of the inflow and outflow of the river at the reservoir location for each month of the study period.
- Operating Rule Information File (*.xop) describes the activity associated with each operating rule. The report is a tabular summary of the amount of water simulated by each operating rule and summarizes the operating rule parameters. TSTool has been recently enhanced to read the Operating Rule Information File output, similar to accessing the binary file information.

🔀 TextPad - C:\Google Drive\NorthPlatteNRD\data\StateMod\wwum2012.xdd *

File Edit Search View Tools Macros Configure Window Help

wwum2012.xdd * × WWUM2012_SW.ipy WWUM2012.rsp WWUM2012.opr

Historical Simulation

PAGE NO. 103

STRUCTURE ID (0 = total) : STRUCTURE ACCT (0 = total):	03966_84 107 0	
STRUCTURE NAME :	Interstate_NE_PID_URF84	
RIVER LOCATION - FROM :	03966_84 Interstate_NE_PID_URF8	4
RIVER LOCATION - TO :	03966_84 Interstate_NE_PID_URF8	4

																	Shor	tage		Wate	r Use
				Dem	and		From Riv	ver By			From	Carrier	Ву	Carried		_					
										From				Exchang	From	Total	Total	CU		То	То
Structure	River			Total	CU	Priorty S	torage	Other	Loss	Well	Priorty	Other	Loss	Bypass	SoilM	Supply	Short	Short	CU	SoilM	Other
ID	ID	Year	Мо	NA	NA	(+)	(+)	(+)	(-)	(+)	(+)	(+)	(-)	(+)	NA	NA	NA	NA	NA	NA	NA
				(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
03966 84	03966 84	1995	JAN	69.	0.	0.	0.	0.	0.	0.	0.	69.	0.	0.	0.	69.	0.	0.	0.	0.	69.
03966 84	03966 84	1995	FEB	21.	Ο.	ο.	ο.	ο.	ο.	ο.	21.	ο.	ο.	ο.	ο.	21.	ο.	ο.	ο.	ο.	21.
03966 84	03966 84	1995	MAR	136.	ο.	ο.	ο.	ο.	ο.	ο.	ο.	136.	ο.	ο.	ο.	136.	ο.	ο.	ο.	ο.	136.
03966 84	03966 84	1995	APR	2.	23.	ο.	ο.	ο.	ο.	ο.	2.	ο.	ο.	ο.	22.	25.	ο.	ο.	23.	ο.	2.
03966 84	03966 84	1995	MAY	ο.	7.	ο.	ο.	ο.	ο.	ο.	ο.	ο.	ο.	ο.	7.	7.	ο.	ο.	7.	ο.	ο.
03966 84	03966 84	1995	JUN	ο.	36.	ο.	ο.	ο.	ο.	ο.	ο.	ο.	ο.	ο.	36.	36.	ο.	ο.	36.	ο.	ο.
03966 84	03966 84	1995	JUL	5256.	1346.	ο.	ο.	ο.	ο.	ο.	ο.	5256.	ο.	ο.	ο.	5256.	ο.	ο.	1346.	65.	3843.
03966 84	03966 84	1995	AUG	7209.	2079.	ο.	ο.	ο.	ο.	ο.	Ο.	7209.	ο.	ο.	Ο.	7209.	ο.	Ο.	2079.	Ο.	5127.
03966 84	03966 84	1995	SEP	2038.	442.	ο.	Ο.	ο.	ο.	ο.	2038.	ο.	Ο.	ο.	Ο.	2038.	ο.	Ο.	442.	Ο.	1595.
03966 84	03966 84	1995	OCT	ο.	10.	ο.	Ο.	ο.	ο.	ο.	Ο.	ο.	ο.	ο.	10.	10.	ο.	ο.	10.	ο.	ο.
03966 84	03966 84	1995	NOV	117.	ο.	ο.	Ο.	ο.	ο.	Ο.	Ο.	117.	ο.	ο.	Ο.	117.	ο.	ο.	ο.	10.	107.
03966_84	03966_84	1995	DEC	105.	0.	0.	0.	0.	0.	ο.	0.	105.	0.	0.	0.	105.	0.	0.	0.	0.	105.
03966_84	03966_84	1995	TOT	14952.	3943.	0.	0.	0.	0.	0.	2061.	12892.	0.	0.	75.	15027.	0.	0.	3943.	75.	11003.

																	Shor	tage		Wate	r Use
				Dema	and		From Riv	ver By			From	Carrier	Ву	Carried		_					
										From				Exchang	From	Total	Total	CU		То	То
Structure	River			Total	CU	Priorty S	Storage	Other	Loss	Well	Priorty	Other	Loss	Bypass	SoilM	Supply	Short	Short	CU	SoilM	Other
ID	ID	Year	Mo	NA	NA	(+)	(+)	(+)	(-)	(+)	(+)	(+)	(-)	(+)	NA	NA	NA	NA	NA	NA	NA
				(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
03966 84	03966 84	1996	JAN	71.	0.	0.	0.	0.	0.	0.	0.	71.	0.	0.	0.	71.	0.	0.	0.	21.	49.
03966 84	03966 84	1996	FEB	25.	ο.	ο.	ο.	ο.	ο.	ο.	25.	ο.	ο.	ο.	ο.	25.	ο.	ο.	ο.	7.	17.
03966 84	03966 84	1996	MAR	93.	Ο.	ο.	ο.	ο.	ο.	ο.	ο.	93.	ο.	ο.	ο.	93.	ο.	ο.	ο.	ο.	92.
03966 84	03966 84	1996	APR	ο.	174.	ο.	Ο.	ο.	ο.	Ο.	Ο.	ο.	ο.	ο.	174.	174.	Ο.	Ο.	174.	Ο.	ο.
03966_84	03966 84	1996	MAY	86.	160.	ο.	Ο.	ο.	ο.	Ο.	86.	ο.	Ο.	ο.	134.	220.	Ο.	Ο.	160.	Ο.	60.
03966_84	03966 84	1996	JUN	998.	396.	ο.	Ο.	ο.	ο.	ο.	998.	ο.	Ο.	ο.	96.	1094.	Ο.	Ο.	396.	Ο.	697.
03966_84	03966 84	1996	JUL	7911.	1641.	ο.	Ο.	ο.	ο.	Ο.	Ο.	7911.	Ο.	ο.	Ο.	7911.	Ο.	Ο.	1641.	404.	5863.
03966 84	03966 84	1996	AUG	6677.	1183.	ο.	Ο.	ο.	ο.	Ο.	Ο.	6677.	Ο.	ο.	Ο.	6677.	Ο.	Ο.	1183.	Ο.	5491.
03966_84	03966_84	1996	SEP	1069.	33.	ο.	Ο.	ο.	ο.	ο.	1069.	ο.	ο.	ο.	Ο.	1069.	Ο.	Ο.	33.	Ο.	1035.
03966_84	03966_84	1996	OCT	ο.	з.	ο.	Ο.	ο.	ο.	ο.	ο.	ο.	ο.	ο.	з.	з.	Ο.	Ο.	з.	Ο.	ο.
03966_84	03966_84	1996	NOV	112.	0.	ο.	0.	ο.	ο.	0.	0.	112.	0.	ο.	0.	112.	Ο.	Ο.	0.	з.	108.
03966_84	03966_84	1996	DEC	145.	0.	ο.	ο.	0.	ο.	0.	0.	145.	0.	0.	0.	145.	0.	0.	0.	ο.	145.
03966_84	03966_84	1996	TOT	17186.	3590.	0.	υ.	0.	0.	υ.	2178.	15008.	0.	0.	407.	17593.	υ.	0.	3590.	436.	13560.
																	Shor	tage		Wate	er Use
											JUL										

- 0 ×

• ×

		Sta	tion In,	Out (
	Upstrm	Reach	Return	Well	From/To	River
Loss	Inflow	Gain	Flow	Deplete	GW Stor	Inflow
NA	(+)	(+)	(+)	- (-)	(+)	(+)
(19)	(20)	(21)	(22)	(23)	(24)	(25)
0.	921.	0.	0.	0.	0.	921.
ο.	778.	ο.	Ο.	Ο.	ο.	778.
ο.	740.	ο.	ο.	Ο.	ο.	740.
0.	656.	0.	Ο.	0.	0.	656.
ο.	679.	ο.	0.	0.	ο.	679.
ο.	580.	ο.	ο.	ο.	ο.	580.
2.	2669.	ο.	Ο.	0.	ο.	2669.
з.	3053.	ο.	Ο.	Ο.	ο.	3053.
1.	2262.	ο.	Ο.	0.	ο.	2262.
Ο.	1388.	ο.	Ο.	ο.	ο.	1388.
ο.	1180.	ο.	ο.	ο.	ο.	1180.
0.	1005.	0.	0.	0.	0.	1005.
6.	15913.	0.	0.	0.	0.	15913.
		Sta	tion In,	Out		
	Upstrm	Reach	Return	Well	From/To	River
Loss	Inflow	Gain	Flow	Deplete	GW Stor	Inflow
NA	(+)	(+)	(+)	(-)	(+)	(+)
(19)	(20)	(21)	(22)	(23)	(24)	(25)
0.	854.	0.	0.	0.	0.	854.
Ο.	730.	ο.	0.	0.	ο.	730.
0.	663.	0.	Ο.	0.	0.	663.
ο.	776.	ο.	0.	0.	0.	776.
0.	667.	ο.	0.	0.	0.	667.
0.	967.	ο.	0.	0.	0.	967.
з.	3697.	ο.	0.	0.	0.	3697.
з.	3537.	ο.	0.	0.	0.	3537.
1.	2244.	ο.	0.	0.	ο.	2244.
0.	1500.	ο.	0.	0.	0.	1500.
0.	1284.	ο.	0.	0.	0.	1284.
0.	1113.	0.	0.	0.	0.	1113.
7.	18032.	0.	0.	0.	0.	18032.
				(a		
		Sta	tion In,	Out		

TextPad - C:\Google Drive\NorthPlatteNRD\data\StateMod\wwum2012.xre *

File Edit Search View Tools Macros Configure Window Help

! D ☞ 🖬 🗐 🗇 D 🗐 🐰 🖻 🖻 | 요 요 | ᆕ ╤| ᆕ ୩ | 🧇 🎌 🕸 🖓 👁 🐗 🐂 | • ⊪ → 🚽 ! 존 🐗 🐂 | ∽ ⊸ | 🔺 🌾 🌾 🌾

wwum2012.xre* × wwum2012.xdd WWUM2012_SW.ipy WWUM2012.rsp WWUM2012.opr

RESERVOIR RESERVOIR RESERVOIR RESERVOIR RIVER LOCA	ID NAME ACCOUNT OWNER ATION	£	: AMOUNT : :	Inla Inla O Tota Inla	ndA nd 73 1 nd	ug Lakes 6640.; Lakes	Agg Re where	account	0	is	the	total
STRUCTURE	DATA				#		af					

Capacity : 1 73640. Reservoir Rights : 1 73640.

												From	a Storage	e to							
					From Ri	ver by		From	Carrier	by									Targt_0	BOM	
			Initial								Total	River	River	Carrier	Total		Seep &	EOM	Stor_n	Decree	River
Reservoir			Storage	Priorty	Storage	Other	Loss	Priorty	Other	Loss	Supply	For Use	For Exc	for Use	Release	Evap	Spill	Content	Limit	Limit	Inflow 1
ID	Acc Year	e Mo	AN c	(+)	(+)	(+)	(-)	(+)	(+)	(-)	NA	(-)	(-)	(-)	NA	(-)	(-)	NA	NA	NA	(+)
			(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)
InlandAg	0 1999	JAI	42369.	0.	0.		0.	0.		0.	0.	0.	0.	453.	453.	131.	0.	41784.	69000.	31271.	921.
InlandAg	0 1999	5 FEE	8 41784.	ο.	ο.	ο.	ο.	206.	ο.	ο.	206.	ο.	ο.	ο.	ο.	177.	0.	41812.	69000.	31856.	778.
InlandAg	0 1999	5 MAI	R 41812.	ο.	ο.	ο.	ο.	ο.	ο.	ο.	ο.	ο.	ο.	1153.	1153.	333.	0.	40327.	69000.	31828.	740.
InlandAg	0 1999	5 APE	R 40327.	ο.	ο.	ο.	ο.	8996.	ο.	ο.	8996.	ο.	ο.	ο.	ο.	667.	ο.	48656.	69000.	33313.	656.
InlandAg	0 1995	5 MAX	Y 48656.	ο.	ο.	ο.	ο.	20344.	ο.	ο.	20344.	ο.	ο.	ο.	ο.	1155.	ο.	67845.	69000.	24984.	679.
InlandAg	0 1999	5 JU	N 67845.	Ο.	ο.	ο.	ο.	1155.	ο.	ο.	1155.	ο.	ο.	Ο.	ο.	1529.	Ο.	67471.	69000.	5795.	581.
InlandAg	0 1999	5 JUI	L 67471.	Ο.	ο.	ο.	ο.	3699.	ο.	ο.	3699.	Ο.	Ο.	18641.	18641.	1686.	Ο.	50843.	69000.	6169.	2689.
InlandAg	0 1999	5 AUG	G 50843.	Ο.	ο.	ο.	ο.	6604.	ο.	ο.	6604.	Ο.	Ο.	42447.	42447.	1026.	Ο.	13974.	69000.	22797.	3090.
InlandAg	0 1999	5 SEI	P 13974.	Ο.	ο.	ο.	ο.	12284.	ο.	ο.	12284.	Ο.	Ο.	Ο.	ο.	519.	Ο.	25740.	69000.	59666.	2272.
InlandAg	0 1999	5 001	r 25740.	Ο.	ο.	ο.	ο.	8690.	ο.	ο.	8690.	Ο.	Ο.	Ο.	0.	410.	Ο.	34019.	69000.	47900.	1388.
InlandAg	0 1999	5 NOV	V 34019.	Ο.	ο.	ο.	ο.	ο.	ο.	Ο.	ο.	0.	Ο.	1234.	1234.	173.	0.	32612.	69000.	39621.	1180.
InlandAg	0 1999	5 DEC	32612.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	1003.	1003.	108.	0.	31501.	69000.	41028.	1005.
InlandAg	0 1995	5 TO	42369.	0.	0.	0.	0.	61978.	0.	0.	61978.	0.	0.	64931.	64931.	7914.	0.	31501.	-1.	-1.	15981.

												From	n Storage	e to							
					From Ri	ver by		From	Carrier	bу									Targt_0	BOM	
			Initial								Total	River	River	Carrier	Total		Seep &	EOM	Stor_n	Decree	River
Reservoir			Storage	Priorty	Storage	Other	Loss	Priorty	Other	Loss	Supply	For Use	For Exc	for Use	Release	Evap	Spill	Content	Limit	Limit	Inflow
ID	Acc Year	Mo	NA	(+)	(+)	(+)	(-)	(+)	(+)	(-)	NA	(-)	(-)	(-)	NA	(-)	(-)	NA	NA	NA	(+)
			(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)
InlandAg	0 1996	JAN	31501.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	269.	269.	112.	0.	31120.	69000.	42139.	854.
InlandAg	0 1996	FEB	31120.	ο.	ο.	ο.	ο.	232.	ο.	ο.	232.	Ο.	Ο.	ο.	ο.	152.	0.	31201.	69000.	42520.	730.
InlandAg	0 1996	MAR	31201.	ο.	ο.	ο.	Ο.	ο.	ο.	Ο.	0.	Ο.	Ο.	709.	709.	286.	0.	30206.	69000.	42439.	663.
InlandAg	0 1996	APR	30206.	ο.	ο.	ο.	ο.	38677.	ο.	ο.	38677.	0.	Ο.	ο.	Ο.	686.	0.	68198.	69000.	43434.	779.
InlandAg	0 1996	MAY	68198.	ο.	ο.	ο.	ο.	802.	ο.	ο.	802.	Ο.	Ο.	ο.	ο.	1252.	Ο.	67748.	69000.	5442.	673.
InlandAg	0 1996	JUN	67748.	ο.	ο.	ο.	ο.	1252.	ο.	0.	1252.	Ο.	0.	ο.	ο.	1528.	0.	67472.	69000.	5892.	970.
InlandAg	0 1996	JUL	67472.	Ο.	ο.	ο.	0.	6168.	ο.	0.	6168.	0.	0.	54187.	54187.	1382.	0.	18072.	69000.	6168.	3711.
InlandAg	0 1996	AUG	18072.	ο.	ο.	ο.	0.	10730.	ο.	0.	10730.	0.	0.	13801.	13801.	765.	0.	14235.	69000.	55568.	3557.
InlandAg	0 1996	SEP	14235.	ο.	ο.	ο.	ο.	30036.	ο.	0.	30036.	Ο.	0.	ο.	ο.	616.	0.	43656.	69000.	59405.	2245.
InlandAg	0 1996	OCT	43656.	Ο.	ο.	ο.	0.	4197.	ο.	0.	4197.	0.	0.	ο.	ο.	513.	0.	47340.	69000.	29984.	1500.
InlandAg	0 1996	NOV	47340.	ο.	ο.	ο.	0.	ο.	ο.	0.	ο.	0.	ο.	1005.	1005.	208.	0.	46127.	69000.	26300.	1284.
InlandAg	0 1996	DEC	46127.	0.	0.	0.	ο.	0.	0.	0.	0.	0.	0.	1343.	1343.	130.	0.	44655.	69000.	27513.	1113.

_ 0 ×

▼ ×

Station Balance

Stati	OII DAIA	lice	
River	River	River	River
Release	Divert	by Well	Outflow
(+)	(-)	(-)	NA
(20)	(21)	(22)	(23)
0.	0.	0.	921.
ο.	0.	0.	778.
ο.	Ο.	0.	740.
ο.	0.	ο.	656.
ο.	0.	0.	679.
ο.	Ο.	1.	580.
ο.	Ο.	19.	2669.
ο.	Ο.	37.	3053.
ο.	Ο.	10.	2262.
ο.	Ο.	0.	1388.
ο.	Ο.	ο.	1180.
ο.	Ο.	0.	1005.
0.	0.	68.	15913.
Stati	on Bala	nce	
River	River	River	River
Release	Divert	by Well	Outflow
(+)	(-)	(-)	NA
(20)	(21)	(22)	(23)
0.	0.	0.	854.
ο.	Ο.	0.	730.
Ο.	Ο.	0.	663.
Ο.	Ο.	з.	776.
Ο.	Ο.	6.	667.
Ο.	Ο.	з.	967.
Ο.	Ο.	14.	3697.
ο.	ο.	20.	3537.
ο.	ο.	1.	2244.
ο.	Ο.	ο.	1500.
ο.	ο.	ο.	1284.
Ο.	ο.	ο.	1113.

Operating Rule Information File (*.xop)

wwum2012	.xop * ×	wwum2012.xre	wwum	2012.xdd	WWUM2012	_SW.ipy	WWUM2012.rsp	WWUM2	012.opr				
2007	0.	22.	0.	6.	36.	2344	. 0.	0.	0.	0.	0.	0.	2409.
2008	ο.	27.	39.	189.	758.	0	. 3764.	5651.	222.	ο.	ο.	ο.	10649.
2009	58.	63.	71.	78.	1126.	0	. 4788.	ο.	2449.	ο.	ο.	ο.	8632.
2010	93.	20.	33.	32.	247.	484	. 0.	ο.	2480.	ο.	ο.	ο.	3389.
2011	0.	0.	0.	666.	1117.	368	. 0.	0.	2797.	0.	0.	0.	4948.
2012	0.	0.	103.	1745.	1633.	3212	. 0.	0.	486.	0.	0.	0.	7179.
2013	ο.	0.	ο.	ο.	522.	1624	. 0.	ο.	ο.	ο.	ο.	ο.	2147.
AVG	20.	50.	38.	89.	1000.	1717	. 942.	928.	2454.	62.	57.	38.	7396.
Opera	tional	Right Summa	ary A	CFT									
ID =	03966.1	121	Name	= Dire	ct_rights	s_to_03	966_8 Opr 1	[ype =	11 Adı	min # =	190	04.09190	
Sourc	e 1 = (3966.02	Dest	ination	1 = 03966_	84	Year	On =	0 Ye	ar Off =	9999		
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOT
1980	0		0	101	747	1418		0	1722			0	3988
1981	0.	0.		115	1	1557		0.	2010	0.	0.	0.	3682
1982	30		ŏ.	16	391	173			1525	0.	0.		2134
1983	0.0	0.	ő.	20.	0.01	885		0	2108	0	59	80	3134
1984	85.	83.	20.	0.	51.	1807	. 0.	0.	1922.	0.	103.	96.	4166.
1985	87.	209.	31.	79.	1560.	1750	. 0.	0.	1646.	0.	0.	0.	5362
1986	0.	205.	54	0.	1132.	916		0.	1587.	0.	256.	262	4207.
1987	0.	0.	0.	0.	466	710		4353	1607	0.	0.	0.	7136
1988			31		783	1050		1000.	1803	0.	0.		3667
1989		0.	0	192	1418	962		0.	1021	0.	0.	0.	3592
1990	0	0	ŏ.	1.22.		0		3715	1021.	0.	0	ő.	3716
1991	0.	0.	0.	0.	0.	36	. 0.	0.	1824.	0.	0.	0.	1860.
1992	0.	0.	4.	0.	0.	156	. 3773.	0.	1381.	0.	0.	15.	5329.
1993	0.	0.	0.	68.	984.	23	. 0.	0.	1324.	0.	0.	0.	2398.
1994	0.	0.	0.	229.	822.	2062	. 0.	0.	1282.	0.	0.	0.	4394.
1995	0.	21.	0.	2.	0.	0	. 0.	0.	2038.	0.	0.	0.	2061.
1996	0.	25.	0.	0.	86.	998	. 0.	ō.	1069.	0.	0.	0.	2178.
1997	0.	45.	156.	0.	796.	544	. 0.	0.	2348.	0.	0.	0.	3889.
1998	0.	0.	25.	0.	154.	600	. 0.	0.	1934.	0.	0.	0.	2712.
1999	ο.	ο.	ο.	ο.	392.	421	. 0.	ο.	761.	38.	ο.	0.	1612.
2000	ο.	0.	ο.	ο.	796.	2930	. 0.	ο.	1100.	0.	ο.	ο.	4825.
2001	ο.	41.	24.	ο.	742.	1160	. 0.	ο.	1139.	ο.	ο.	ο.	3105.
2002	ο.	ο.	63.	18.	95.	1725	. 0.	3318.	ο.	ο.	ο.	ο.	5218.
2003	ο.	1.	ο.	ο.	158.	563	. 0.	ο.	ο.	ο.	ο.	ο.	721.
2004	ο.	15.	ο.	ο.	223.	298	. 1045.	3925.	ο.	ο.	ο.	ο.	5506.
2005	ο.	39.	24.	ο.	138.	187	. 0.	ο.	ο.	ο.	ο.	ο.	389.
2006	ο.	16.	ο.	51.	853.	801	. 0.	ο.	0.	ο.	ο.	ο.	1721.
2007	ο.	12.	ο.	4.	21.	1360	. 0.	ο.	ο.	ο.	ο.	ο.	1397.
2008	ο.	16.	22.	110.	440.	0	. 0.	ο.	ο.	ο.	ο.	ο.	588.
2009	ο.	36.	40.	44.	634.	0	. 2698.	ο.	1380.	ο.	ο.	ο.	4832.
2010	10.	12.	18.	18.	139.	272	. 0.	ο.	1393.	ο.	ο.	ο.	1861.
2011	ο.	ο.	ο.	447.	749.	247	. 0.	ο.	1876.	ο.	ο.	ο.	3318.
2012	ο.	ο.	ο.	1190.	1114.	2191	. 0.	ο.	332.	ο.	ο.	ο.	4826.
2013	ο.	ο.	ο.	ο.	350.	1089	. 0.	ο.	0.	ο.	ο.	ο.	1439.
AVG	6.	30.	22.	56.	605.	1003	. 359.	316.	1469.	34.	34.	24.	3957.

Calibration Results

Calibration is the process of simulating the river basin under historical conditions and adjusting specific parameters to achieve agreement between gaged and simulated values of streamflow gages, reservoir levels, and diversions. Calibration of the WWUM Model was constrained due to the WWUM Model Integration components.

- Canal efficiencies
- Storage and release operations for the Inland Reservoir System
- Operational capacity and priority of carriers
- Locations were overland inflows accrued

Calibration results for all gages, diversions, and reservoirs are provided on the CD in the back of the WWUM Water Resources Model User's Manual.

Discussion Topics and Future Scenarios

- Natural Flow vs. Storage Flow
- Surface Water "Call" and Use of Contract Water
- "What-if" Scenarios:
 - o Change in Municipal Pumping
 - o Increased/Decreased "Natural Flow"
 - Change in Efficiencies or Operations
 - o Additional Downstream Demands
 - Augmentation/Recharge
 - o Allocations